F# vs Rust for F# programmers from Rust programmer

0.) Contents

0.) CONEENTS ...ttt bt e bt bbb R b e s e e e e h e e R e e R e AR e AR £ AR £ R e e e R e At et e R e e R e e bt Rt bt E et n e ere s 1
) a1 1 (oo [0 To1 o] o TSR P TP PP P TPSSORPR 5
I 0 g Fo T o T= TS (oI F= Va0 U T o= RSP 5

W I 7 Lo F= T (o 11 o] = o Y2 SR 5
B T 1ol [g =T o 7 Lo o ISP 5
2.2.) BASIC tYPES COMPAITSONveueeieeiieiististest ettt ettt bt b et h et b bbb s e et e s e e st e bt b e b nb b e n e e e ene e 6
2.2.1.) INTEAYETS ...tttk b et E bt b R b e e R R R R R R R R R R e Rt R R R R n e n e e 6
i [0 | TSR POUTOSPRR 6
2.2.3.) CharaClers @N0 TEXL.......cceiiiiiiieite ettt et e e e s beeae e be s ae e b e s beeaeesbeebeenbesaeeseesbesaeebesteaneesreaseerens 7
.22 UNIE .ottt 7
2.2.5.) TUPIE .ot h bR b e R R bR bR R e R Rt R R b bt 7
2.2.6.) ATTAY ...ttt etttk h bk b e R AR R R R R R R R AR R R £ AR b e R e Rt e R e R e R Rt R b bt r et ne e 7
2.2.7.) Mutable resizable Array/liSt...........oocv it re e nr e reeraenre 8
R) Lo SO TSSPRSR 8
2.2.9.) ENUM (C-TTK) ...ttt bbb bttt b bbb et ne e 9
2.2.10.) DISCHIMINATEA UNMIONc.eiuiiiiiiiitiiti ettt b bbb bt e e e bt e b e bbbttt ene s e 9
2.2.11.) RESUIL, OPLION AN ASYNC...c.veiiieiiecieeie ettt st te e et e s beese e besae e sbestaebesbeeseesbesaeestesteesesbeeseestesreeneesns 10

W A N oo T 4] (= €TSS PPR 13
PG o =1 0V 1]) (1T OSSR S U PSRPT 13

P @] o =T -1 (o] £ T ST PSPPSR TP PP PTPPPPRORPIN 15
2.5.) UNIES OF MEBASUIE.......ceitiieiieeei ettt bbb bbb bbbt bbb e e et e bt bt e bt bbb e bt e e e e e st ene s 15
2.6.) INTEITACES VS TIAILS ... euiiuiiiti ettt te sttt s e ettt s e e e e st e et e st e e be et e s beese e besbeeseesbeeaeesbesteenbesbeeseebesbeebesteeneeneas 15
KT T V14101 1T TSROSO 16
3.1.) SIMPIE SYLAX EXAIMPIE ...ttt bbbkt b et b et e e bt bbbt bbb e e e e e s eneere s 16
3.2.) Mutable object reference passed t0 the TUNCTION............coiiiiiiiii e 16
303L) CNAIN CAIIS ...tttk bbbt h bbb b bRt e e e R Rt bRt bbbt e e re s 17
TR) Vg -\ 111 0= 0 =T o SRR 17
R 1111011 (= =T 18 =T o o SR 17
I 0N [0/ [TSSOV P PR PTPRPRRTRPIN 18
3.5.) Computation expressions / Try / Procedural macros / macro_rules!ccoovevviiiiieie s 18
3.5.1.) Closure fOr OPtioN / RESUIToiiiiieieee bbbt 18
3.5 2.) ThY oot e et ettt e e eee e e 19
T I 8 o 1T (ot £ T (][] SR 19
N B o o Tol=To [N =1l £ o Tod £ TSSO PP 19
3.5.5.) COMPULALION EXPIESSIONS .. vvevveveiiieiteiteestesteeteetesteessestesseessesteaseestessaesbesteessesbeaseessestasssesreasaessesreessesresseeneeses 20

I T o 1o SRR 20

T L0 Lo (=N oY T U0 o TP 20

6.) Ownership (and borrowing) reSPONSIDIITIESooiiiiie et ee e 21
T VLY g To I S =1 10 1571 o] SR 21
I T U 4] o] =TSSR 21

6.2.1.) Erator INVAIAATION ..o ettt b bt b e nn e e s e 21
8.2.2.) USE AFTEI TTBE ...t b b e bbb R r e n e nen s 22

A 1 =010 1) (=] SRR 23
A5 o] = 4 TSP 23
A O 12T L1 =T (=T 0= TSR 24

7.2.1.) ITTET STALEIMIENT ...kt b bt bbbt b bt bbb et ne e 24
7.2.2.) Namespaces and MOGUIESc.coiiiiiiice ettt e e n e 24
7.2.3.) Private vs public, mutable vs imutable, NUIADIlItY ... 24
O (o= o) 1] ST PP 25
T =) (SRS 25
7.2.6.) INterop With OtNET [ANGUAGESc.viviiieiiieieeeie ettt sttt nn e 25
7.2.7.) AUTOIMPIEIMENT TIAITS ... c.eeuiieieiieiiei ettt b bbbttt b bbbttt ne e 25
R B L 1od 0o C=To i oo] {1 oSSR 26
e B (o 1110 USSR 26
7.2.10.) DEDUGGING ...ttt bbb bbb R b bttt R R bbb n et ns 26
7.2.11.) Profiling COMPIIATION TIMES.........coiiiitiiiie ettt nn e 26
7.2.12.) Conditional COMPITATION.c.eiuiiiiiiitiie bbbttt bbbt ne e ens 27
B T A S SRS 27
FAC R o 4] o1 = Ao T g =T A (o] £ RPN 28
7.3.1.) Misspelled variable name variableX VS VariabIeX ..o 28
7.3.2.) Code optimized to point of a bug? Almost swapped error to helpcocvevviveieriiiiecese e 29
7.3.3.) CONSTANT OVEITIOW.cuiiiiicic e et e e st et e et e s beese e besae e st e sbeensesbeeteebesreenne e 29

8.) EXamples in the OTher TANQUAGEcove ittt st et e s e besbe e stesbe e bt e s besreesbesbaeneeseas 30
8.1.) TNE "WNY USE FH?" SEIIES ... eeeteiteeei ettt ettt ettt ettt e s ettt etesae e st e bt eme e eesaeemeeseeeseeneesseeneeseeaneenneseeeneeneas 30
8.2.) The Rust Programming Language (The DOOK)..........ooiiiiiiiieee e 30
8.3.) Config inspired by our confing being fUll OF STFINGSccoiiiiiiic e 31

9.) Advantages and disadvantages as found on the INTErNEt ... 31
1. Advantages of F# as found on the INTEIMET ..o e ee e re e 31

0.1.1.) AIGEDIAIC DALA TYPESvveveiiitiitistertest ettt sttt bbbkt b bbb bttt b e bbbt e s ne e 31
9.1.2.) Transformations and MUTATIONSoiueiiiiiiiiii ittt e e 31
0.1.3.) COMCISE SYMEAX ...vuveutereeseesieieeie sttt sttt bbbtk b bbb s bbbt b e bbb et e s e st b e bbb e bt et e e e e s 31
LS00 I 3 N 00 0 1Y/ 1T o o SRR 31
L8R L 00 ¢ (= ox £ 1= SR 31
LB) 1001 (ol [=T oy SRR PR 31

LI T 60 441 0] (= (= 1= SRR 32

LSRR I 1] g 4= ot o 1T SRR 32

LSBT Y/ o T= o] 0T =T SRR 32
9.1.10.) Sequential COMPIALIONcciiieic e et te s te e s reete e s b e sreeseesresreesee e 32
9.1.11.) NO CYClIC AEPENUENCIESecvviveiiie ettt sttt et et esbeeae e be s ae et e s beeseesbeateesbesreeseesresreesee e 32
9.2.) Disadvantages of F# as found 0N the INTEIMET............cooii i 32
9.2.1.) Naming iS MOIe CRAIENGING.cueiuiiririeieie ettt b bt e 32
9.2.2.) More COMPIEX AALA SLIUCTUIESoviivieie ettt ettt be et s re et e te e e e s teste e b e sreeseesresneenee e 32
LS B B T To (V7 g ol =T I o o] SRR 32
9.2.4.) Microsoft documentation is out of date, Moved, 404.............ccoov e 32
9.3.) Rust advantages as found 0N the INTEIMET ..o 33
9.3.1.) HIgh PEITOIMEANCE ...ttt b bt b e e 33
LRI AV, (=10 a1 V=1 =] 0SSP 33
9.3.3.) AMOUNT OF Crat@S ON CrALES.I0 ...veiuieiiiiiicie ettt be e be et e s e et e s te e e e st e ste e b e sbeeseesresreenee e 33
9.3.4.) COMIMUNITY ..eovtiitietie ittt ettt s et st e te et e s beese e s besaeebesbeeseesbeeteesbesbeese e besReeseesteeseesbeateeneeseeeseesresreeneesns 33
9.3.5.) Backward compatibility @nd STADIITYccveiiiiiiiie e 33
9.3.6.) Low overhead makes it ideal for embeded programmingccocviriiirenereiee e 33
9.3.7.) Rust facilitates powerful web application developmeNt ... 33
9.3.8.) Rust’s Static Typing Ensures Easy Maintainabilitycccccooiiiiiiiii i 33
9.3.9.) Cross-Platform Development and SUPPOIT..........coiiiiirieieieieeees e 33
9.3.10.) Rust Has an EXPanSiVE ECOSYSTEIMcuiiiiiiiiiieriiite ettt 33
0.3 10.) SBOUNILY ...ttt h kbbbt h £ b bt H b e et e s e Rt b e bt bbb bt 33
9.3.12.) Great rror NANGINGc.ooiiiiiec e e et e st e b e s be e e e s beete e resreereesbesre e e e 33
9.4.) Rust disadvantages as found 0N the INTEINET...........coi it 34
0.4.1.) COMPIIE TIMES ...t bbb bbbt bbb bbb e e st bbbt bbb e e 34
9.4.2.) Hard tO get COAE T0 COMPIIEocuiiiieei ettt bbb e 34
9.4.3.) Learning Curve and DEVEIOPIMENTcvi ittt sttt e b s be et resre e 34
Lo I 4011 L= OSSR SPR 34
9.4.5.) Rust is NOt @ SCHPTING TANQUAGEeovieeeie ettt ettt este st e e e sreeneeseeeneenee e 34
9.4.6.) NO garDAGE CONMBCION ...ttt bbbttt b et 34
0.4.7.) BIgOEI DINAIY FIES. ...t bbbttt b bbbt et 34
O T U= 1T S SRRPPRRRN 34
10.1.) Can you cover using Rust in Enterprises, i.e. what support model there is plus does it cover the basic
functions required to work in an enterprise i.e. Kerberos auth €tC.cooveeiiiiiiineieseee e 34
10.2.) Coming from Rust, what do you like/don't like abOUT F#...........ccooeiiiiiiieee e 35
000 0 1= PSSR 35
08 N o o B A 1SR 35
10.3.) What kind of 'mindset’ does Rust teach its users? (for example F# | think teaches/preaches heavy domain
MOAEIING WILN DUS ©TC...) e eieiiicie ittt ettt ettt et st e st e e st e st e st e e s tesbease e besaeessesbesneeaestaensesreeneenrens 35
10.4.) How to do asynchronous call (USErs POINT OF VIBW)oiiiiiiiii e 36

10.5.) Do you ,,fight the DOrrOW CRECKEI et nee e 36

10.6.) How Rust deals with covariance and CONTIAVAITANCEooiiierieieie et re et seee e e enee e

10.7.) GENEIICS @ INNEIITANCEeeie ettt ettt ettt e s te et e e e steese e besseeneesbeaneeseeaneeneeseeaneeneeas

11.) Summary

12.) Revisions

1.) Introduction

When | started writing the introduction there was already 8 chapters. Originally | plan to be as objective as possible,
but when | finished first part of the comparison, | figured out that is just not possible, because if F# have a feature
that rust is missing | can just simply implement it, but it is not possible to do it the other way around.

So this is my subjective comparison, when | try to stay as objective as possible, but | do not let Rust lose points just
because a simple library no one might need is missing.

At first glace both languages looks similar, but Rust have more braces (which | actually prefere, because it is clearer
where tings start and and thanks to IDE’s colorings, | can not say the same for F# where line wrapping screw up
everything.

But | also learned few things when creating this comparson. If we ignore the obvious (how much Rust is better) then
for example that F# can access characters of the string (I hope to never need it, because it is terrible).

1.1.) Changes to language

F#
Microsoft alone decides when to add something, and when to break something, and only if too many people
disagree they reconsider fixing/reverting that change.

Rust

Anyone car write sugestion, or even whole RFC that will be discussed, reviewed, and if most people agree
implemented, in case of breaking change (not security related, they have exeption and may come in hotfix release)
you can read about it at least 12-18 weeks in advance and compiler will start producing warnings about it 6-12 weeks
in advance so you know which code will change behavior in the future, and can make sure you know how to deal
with it, and of course the error message contains short explanation, and link to the RFC or change PR.

2.) ,Standard” library

Rust’s standard library is relatively small, compared to .Net’s one, but it contains the most important things, and for
rest people can chose, even though there are libratioes like rand (random number generation), rayon (parallelism),
byteorder (endian conversions), and many more that are used by standard library, but not exported out, so they are
not forced on people that do not need them.

.Net on the other hand have quite a lot of things in the standard library, and before native build targets it was
dragging all that with it in form of runtime, but it was too big so they started to separate it.

I will skip many things that are same or very similar, and only point out difference. Important differences being bold.

2.1.) Documentation

F#
Documentation is mostly provided only online, information directly reachable trough IDE (Visual Studio) is only a
small fraction of that. So you better be online when you want to know something.

Rust

All documentation (not only for standard library, but all crates) is available offiline, or at doc.rust-lang.org/std/.
Because that documentation is generated from code IDE can easily reach it. You can look trough the code online or
offline whenever you want, if the very detailed documentation is not enough for you. I can not overstate how useful
that is, yes with .Net you can decompile the code (and sometimes end up with more readable code than the original
source code), but | am yet to see badly readable Rust library that is the best(or even *first) option for some task.
(first in sense go to crates 10 write keywords for what you want and try to use firs libraryx that matches these key
words)

https://docs.rs/rand/latest/rand/
https://docs.rs/rayon/latest/rayon/
https://docs.rs/byteorder/latest/byteorder/
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/
https://doc.rust-lang.org/std/

2.2.) Basic types comparison

2.2.1.) Inteagers
Both languages allow use of underscores in the number for better readability of long numbers.

F#
shbyte, byte, int16, uintl16, int = int32, uint = uint32, int64, uint64, bigint, nativeint, unativeint
sifixes to specify type, y, uy or B, s, us, l or none, uorul, L, U, I, L, n, un

Inconsistent naming. Two extra types for platform specific things are nativeint and unativeint, these types are
specific to platform used (on amd64 unativeint = uint64) and represent pointer size. Two names for same type,
default type is int. Implementation details and performance implications of bigint are forced on user by default. By
default collections have size as int, which might not be enough, so there are hacks like Array.LongLength.

You can do math with different types and compiler quesses result type.
You can create byte[] array, by sufixing ASCII only string with capital B. Same for character constant "\0’B.

Rust
u8, i8, ulb, i16, u32, i32, ub4, i64, ul28, i128, usize, isize
sifixes to specify type, u8, i8, ul6, i16, u32, i32, ub4, i64, ul28, i128, usize, isize (exactly same as the types)

Very consistent naming. Two extra types for platform specific things are usize and isize, used a lot by standard
library, these types are specific to platform used (on amd64 usize = u64) and represent pointer size, so any
addresable memory location can be 0 + NUBERusize, so size of an array is usize, and there are no hacks for sizes
needed. Rust support so many platfors so usize can be as small as 16 bits, and as big as 128 bits, but this might
change in the future, and no library code depending on usize being big enough will need a change. There are
multiple libraries providing big int functionality so you can pick the one that suits your needs most.

You can not do math with different types, you need to do conversion.

Yyou can create u8[] array, by prefixing ASCII only string with lovercase b. Same for character constant b’\0".

2.2.2.) Floats
Both languages allow use of underscores in the number for better readability of long numbers.

F#
float32, single, float, double, decimal, BigRational

Even more inconsistent naming, because most other languages have float 32 bit, but here it is 64 bits.

Rust
32, f64

Very consistent naming. Because these types map exactly to the most common HW types, there is no strict need for
128, 256 in general code, so these are not part of the standard library, but both are provided by other libraries,
with HW specific optimizations, and other libraries provide floating point number with bigger precision and you are
again not forced to single implementation, but you can chose the compromise that suits your needs best.

2.2.3.) Characters and text

F#
char, string

Often incorrectly is char said to represent character, or unicode code point, but in fact it is UTF-16 code unit. In .net
string type is used to represent single character or sequence of character, which is terrible at best. & So if you
want to represent single character you will need to use string which is 20 bytes + 2 * (1 or 2 depending on
the character, v =1, &4 =2,).

UTF-16 surrogate are not handled by default enumeration.

Rust
char, string

Single character is represented by char (4 bytes).
Utf-8 string is represented by str. SIMPLE! Enumeration yelds char so you always get an valid character.
(For enumerating ASCII only text in tight loop cast from u8 to char can be as fast as 0 ticks on x86 CPU)

2.2.4)) Unit
F#

Special type backed by static class in the bacground, compared to Rust’s emty tuple.
It is again unconsistent sometimes you need to write ,,unit*, and sometimes ,,()“.

2.2.5.) Tuple
F#

(elementl, element2, ...)

Struct(elementl, element2, ...)

Not much to say here, apart from the fact that there is no easy way to to access the elements apart from matching,
and generic functions for 2 element tuples. Heap (default) Tuple, and ValueTuple are two different incompatible

types.
Rust

Box::new((elementl, element?2, ...))

(elementl, element?2, ...)

If you want your tuple on the heap instead you need to put it there, and easiest way is to use box. You can easily
access any element by writing dot and index of the element. Boxed tuple is still same type inside another type, so
they are fully compatible. (Special case of empty tuple is unit, same as in F# but here it does not require class and
new type in the background, and is always written as ,,()*)

2.2.6.) Array
F#

[Jvaluel; viue2|]

leta=1|1; 2;3]]

a.[1] = 2 // single = sign for comparison
letb=[]1]]

b.[0] = 666

https://docs.microsoft.com/en-us/dotnet/api/system.globalization.stringinfo.getnexttextelement?view=net-6.0#system-globalization-stringinfo-getnexttextelement(system-string)

And here we get to the weird stuff. Because Array is not lets say ,,F# native* type, but maped to .net’s runtime
arrays, all of its elements are mutable. Weird dot notation for indexing.

Rust

[valuel, viue2]

leta=11, 2, 3,]; // Rust support trailing coma after last element
a[1] == 2; // double == for comparison

let mut b = [1]; // you need to declare it as mutable

b[0] = 666

Arrays and all element are immutable by default.

2.2.7.) Mutable resizable array/list
Both languages have easy was to take two arrays (or other similar types) and concat/append them by creating third
one.

F#
open System.Collections.Generic

let list = new List<T>()

list.Add(...)

Looks out of place in F# but uses underlying .net implementation from C#.

Rust

let vector = Vec::new();

vector.push(...);

Type can be infered. And looks natural in rest of Rust code.

2.2.8.) Slice
F#

[10;1;2;3;4;5]1 [1..(4-1)] =[11;2;3]] // right bound excluded, by manual decrement

[10;1;2;3;4;5]] [1..4] = [11;2;3;4]] // right bound included
[10;1;2;3;4;5]]1 [1..] =[]1;2;3;4;5]] // unbound to the righ

Slices do not really exist, they create new array (or list, or whatever the original type was). And it is up to the
compiler and runtime to avoid copying if possible.

Rust
[0,1,2,3,4,5] [1..4] == [1,2,3] // right bound excluded

[0,1,2,3,4,5] [1..=4] == [1,2,3,4] // right bound included
[0,1,2,3,4,5][1..]==[1,2,3,4,5] // unbound to the righ

Slice is an actual type, that is internally just two pointers (begin/end).

2.2.9.) Enum (C-like)
F#

type enum-name =
| valuel = integer-literall

| value2 = integer-literal2

To specify the underlying type (sbyte, byte, intl6, uintl6, int32, uint32, int64, uint64, and char) you need to use
correct literals. All values of the underlying type are valid values of the enum, not only the named values!

Rust
#[repr(C)]

enum EnumName {
Valuel =1,
Value2 = 2,

Guaranteed to have same size as if you would define it in C header file, but you can use “repr(u8)" or any other (u8,
i8, ul6, i16, u32, 132, ub4, i64, ul2s, i128) to use different underlying type, and type inference will handle literals.
Notice char is not an option here). Only listed values are allowed and compile time checked! There is an special
option “#[non_exhaustive]" to define enum as not exhaustive, so every matching code needs to use wildcard pattern,
and not even then you are allowed to use any not listed value, but you must expect that some might be received.
(Useful for libraries, that expect to add new cases in the future)

2.2.10.) Discriminated union
F#

[attributes]

type [accessibility-modifier] type-name =
| case-identifierl [of [fieldnamel :] typel [* [fieldname2 :] type2 ...]

| case-identifier2 [of [fieldname3 : Jtype3 [* [fieldname4 : Jtype4 ...]

[member-list]

These are less weird than C-like enums, only listed values can be used, each case is an constructor function.

Size of this monstrosity is 8 Bytes for tag + size of all fields in all cases. (9 (Reasoning being compatibility with
rest of .net...), Possible aligments are 8 or more bytes depending on field types)

Rust

enum EnumName {
Valuel (fieldl, field2, ...), // tuple like
Value2 {field1:typel, field2:type2, ...}, // struct like

Consistent with C-like enum, again only listed values can be used, each case is an constructor function.

Unless otherwise specified (or optimized out @) size is smallest possible byte count for tag (1 byte for enums
with less than 257 cases) plus size of largest case. Possible alignments are 1 ore more bytes depending on
field types, and field can be internally reordered (unless forbidden) by compiler to reach the most optimal
aligment.

2.2.11.) Result, Option and Async
Code at next two pages is simplification of real code, but the F# code does not even do all that the Rust one, because
| just give up on trying to combine result and async together. As you can see | skipped reading constant ammount of
bytes, and asserting they have expected value, and in ,,read_player | give up because it was moving too far to the
right, so | just created some default values. And even with these changes for F# that make it significantly shorter, the
F# code is still much larger (I decreased font size to fit it on page, and removed empty lines), and arguably much less
readable. | asked ,,Henzl, Jan“ if he can help me with the F# code, because | wanted to show that Rust can do this
much nicer, but what | did not expect was that F# will be that much terrible, but he did not came up with anything
that would help F# much.

The issues | see on F# side for this example specifically:

- Combination of exceptions and results
- Very bad compatibility when combining Result and async
- No early return from function so we get stairs to the right

The F# example is incomplete, because the code was too crazy and too far right!

F#

open System. 10

open System

type Fail =

| Ex of Exception

| Me of string

type PlayerType =

| Human = Ox1

| Monsters = 0x2

| Any = Ox3

| EmptySlot = Ox4

type Player = {
name: string
id: uint32
player_type: PlayerType

}
let read_u32_le (sr:FileStream) = async {
return!
try
async{
let buffer : byte[] = Array.zeroCreate 4
let! read =
sr.ReadAsync(buffer, 0, 4)
|> Async.AwaitTask
return
if read <> 4
then Error(Me ")
else
let span = ReadOnlySpan(buffer)
Ok (BitConverter.ToUInt32 span)
}
with
| e -> async{ return Error (Ex e) }
}
let read_player (sr:FileStream) = async {
return!
try
async{
let! name_len = read_u32_le sr
match name_len with
| Error e -> return Error e
| Ok name_len ->
// 1 give up on this example it is too long already
// and going to the right too much
let player = {
name = string name_len
id = uint32 666
player_type = PlayerType.Human
}
return Ok player
}
with
| e -> async{ return Error (Ex e) }
¥
[<EntryPoint>]
let main argv =

async {
use sr = new FileStream(""test.pmv", FileMode.Open)
let! game_version = read_u32_le sr
match game_version with
| Error e ->
printfn "%A" e
return 666 // whatever non O return code
| Ok game_version ->
// there is no result builder :0
// so the code would go to the right too much and would not fit page in any dimension
let! player = read_player sr
match player with
| Error e ->
printfn "%A" e
return 666 // whatever non O return code

| Ok player ->
printfn "%A have game version: %u'" player game_version
return 0

}

|> Async.RunSynchronously

std::io::{Error, ErrorKind::
async_std::{fs::File, io::ReadExt}

#[async std::main]
main () -> Result< () Error> {
file = File: :open() o
pmv = read bytes::<3> (& file).
assert eq! (&pmv)
game version = read u32 le (& file) .
player = read player (& file).

println! (player, game version)

(())
}
[derive (Debug)]
Player {
String

PlayerType
}
[derive (Debug, Copy, Clone, PartialEq, enum primitive derive::Primitive)]
PlayerType

read player (file: & File) -> Result<Player, Error> {
num traits::FromPrimitive
name = read string(file).
id = read u32 le(file).
player type = read u8(file).
player type PlayerType: :from u8 (player type)
.0k or (Error::new
(Player {name, id, player type})

read bytes< : File) -> Result<]|

Error> {
bytes = []
file.read exact (& bytes) .
(bytes)

read u32 le(file: & File) -> Result< Error> {
bytes = []
file.read exact (& bytes) .
(::from le bytes (bytes))

read u8(file: & File) -> Result< Error> {
byte = []
file.read exact (& byte) .
(byte[0])

read string(file: & File) -> Result<String, Error> ({
size = read u32 le(file).
bytes = vec! [size]
file.read exact (& bytes) .
string = String::from utf8(bytes)
.map _err (|e| Error::new
(string)

2.2.12.) Pointers

All good languages need to interact with other languages, and operatin system, it is just impossible to have wrapper

for everything in standard library, and for that you can not avoid pointers.

F#
There is ,,FSharp.Nativelnterop“, but just by looking at it | know | do not want to work with it.

Rust

Rust is designed to interop with pointer based languages, so pointer is native type, that does not feel out of place as
long as you do not want to read, or write to the pointer it feels like any other type, but when you want to read it (or
write to it), you need to be in unsafe block, because compiler have no way to know if that pointer is valid or not. In C
(api) libraries it is common that library have some init function that return untyped pointer, and want to receive that
pointer to every function call (in can be ,,this” from a C++ class, exposed as ,,void** to tell user that he should not

read it, just keep it), this will feel pretty natural in rust, and you do not even need wrapper type.

2.3.) Pretty printing
Both languages provide strongly typed ,,format strings".

F#

type SomeStruct ={
InteagerX : int
FloatY : float
StringZ : string

}

lets={

InteagerX = 666

FloatY = 3.14159

StringZ = "X is 666, Y is "
}

printfn "%A" s

// {InteagerX = 666;

// FloatY = 3.14159;

// StringZ ="X is 666, Y is T";}

HPrintf. TextWriterFormat* provides ,,format string“ that is statically checked, and it does not seems possible to
construct new one at run time using ,,normal“ code.

Rust

#[derive(Debug)]

struct SomeStruct {
inteager_x :i32,
float y :f32,
string_z : &'static str,

}

fn main() {
let s = SomeStruct {
inteager_x : 666,
float_y :3.14159,
string_z :"Xis 666, Y is ",
%

printin!("{:?}", s);
// SomeStruct { inteager_x: 666, float_y: 3.14159, string_z: "X is 666, Y is " }

printin!("{:X?}", s);
// SomeStruct { inteager_x: 29A, float_y: 3.14159, string_z: "X is 666, Y is 1" }

printin!("{:.2x?}", s);
// SomeStruct { inteager_x: 29a, float_y: 3.14, string_z: "X is 666, Y is " }

printin!("{:#?}", s);

// SomeStruct {

// inteager_x: 666,

/1 float_y: 3.14159,

/l string_z: "X is 666, Yis ",
/1}

dbg!(s);

// [src/main.rs:26] s = SomeStruct {
// inteager_x: 666,

// float_y: 3.14159,

/l string_z: "X is 666, Yis ",
/1}

Compared to F# there is much more options on how to pretty print values.

»format_args!”“ macro alows construction of ,,format strings* also is statically checked, and top level implementation
of the returned type is very similar to F#'s implementation (apart from not using so much heap space @). But to
have also some difference here it is possible to construct it at runtime, while still being checked, but that is not
mentioned on the official documentation (and it is in the unstable book experimental only, so no guarantees that API
will not break in the future before being stabilized and put to official documentation), because it requires some

clever tricks to take that compiler part that does the checking in the binary.

2.4.) Operators
F#
There is 27 standard operator categories. To be honest looking at that table and seeing that it does not even
contains all the operators is very confusing to me, and | really do not mind few more braces in Rust that offer much
better clarity.

Comparison operators can be chained.

let x =1< 2 < true <> false
printf "%b" x

Rust
There is 19 categories in expression precedence table. Almost two-thirds in size, but contains complete precedence
rules.

Comparison operators and range operators require parentheses. (Which prevents the example above)

2.5.) Units of measure

F#
For compatibility with rest of .Net they are compile time only.

Rust
Does not need to have compiler support, because it is easy to create new types for this. For example crate uom
allows you to define your own units, or use the Internation System of Units (SI).

2.6.) Interfaces vs Traits
F# uses interfaces, and Rust Traits, but for most uses these two words can be used interchangeably. Both can inherit
from multiple other interfaces/traits, and both can have generic types.

Main differences being compiler internals where Rust prefere to resolve them staticly as much as possible, while F#
compiler does not care, but | can not call it really an advantage if default is dynamic dispatch, but .NET JIT can
optimize at runtime, if it sees that only one type is used, but that is mostly theory of the future, because JIT does not
take these oportunities too often.

Second difference is that if you own the trait, or the type you can implement that trait for the type, and there is
even RFC to allow bin (top level application) crates to implement foreign Trait for Foreign type, so you can combine
two libraies that do not know about each other and one provide Type, while the other provides Trait. This is already
possible trough some tricks with wrapper types, but not having to write a new type would be an improvement. But it
still means if you want a new function that will be on u32, Result<OK, u8>, and Option<f64> (randomly chosen
example types), you can just create an Trait and implement it for these Types.

Third difference that is kind of suggested by the second one is that Traits can be implemented anywhere (limited by
visibility scoping rules), while Interfaces can only be implemented at class definition.

Fourth difference is that Interfaces can define data, to be exact properties, which is just syntax suger for up to 2
functions.

Fifth difference would be that Traits can have associated type, which for example closest alternative would be
additional generic in F#. Example “lenumerable<T>" is just "Iterator” in Rust with associated type called ,,Item* over
which it is iterating.

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/symbol-and-operator-reference/#operator-precedence
https://doc.rust-lang.org/reference/expressions.html#expression-precedence
https://crates.io/crates/uom
https://en.wikipedia.org/wiki/International_System_of_Units

3.) Functions

3.1.) Simple sytax example
F#

letadd xy =x +y // common in F#, all types are infered to be int -> int -> int

let add (x:int) (y:int) : int = x +y // fully qualified types

letinline add xy = x +y // types are infered to be 'a->'b -> 'c (requires member (+))

You often do not see types without an IDE, because they can be infered by compiler.

Rust

fnadd(x: i32,y:32) ->i32 { x +y } //common in Rust with all types

fn add<T:std::ops::Add<Output = T>>(x: T, y: T) -> T { x + y } // generic one accepting anytwo instances of
same type that can be added together

fn add<T:std::ops::Add<OTHER, Output = OUT>, OTHER , OUT >(x: T, y: OTHER) -> OUT {x +y } // less
common one that can accept different types, where second one can be added to the first one, resulting in
the third type. From standard types this will work only if T, OTHER and OUT are all same type.

When you have too many arguments, or too complicated types, it might be less readable (like the extra complicated
example to add two things), but you always see the types. And there are ways to create more reasonable names for
these long types, so the line is not that noisy, but | wanted to show the worst case example for Rust, to lessen the
blow to F#.

3.2.) Mutable object reference passed to the function
F#

let doSomething obj = obj.modify()

No indication that obj is mutable. Hidden mutability by default for everything from .net ecosystem. Mutable
variables are highlighted by IDEs, but everything with hidden mutability (all the classes and .net common types like
arrays) are not highlighted by any of the big IDEs.

Rust
let do_something(obj: &mut Obj) { obj.modify() }

Even without IDE you can see that the argument is mutable. Mutability is explicit by default. Mutable variables
being highlighted by the IDEs by default, as in F# but there is no ,,rest of .net* types, so you can actually relly on it.

3.3.) Chain calls

3.3.1.) Array filter map
F#
leta=[]0;1,2;3;4,5;6;7,8,9;10;11,12;13;14,15]]
let result =

a

|> Array.map(fune -> (e, e * e))

|> Array filter(fun (_e,s) ->s>5 && s < 100)

|> Array.map(fun (e, s) -> (string e, s))

printf "%A" result

Rust

constA: &[u32] = &[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15];
let result =

A.iter()

.map(|e]| (e, e*e))

filter(] (e, s)] *s>5 && *s < 100)

.map(](e,s)] (e.to_string(), s))

.collect::<Vec<_>>();

printin!("{:?}", result);

Rust prefers to work with iterators, over creating new array in every step and hoping that compiler can eliminate
that memory allocation request on every step.

Other than that | would say these two are quite simmilar.

3.3.2.) Infinite sequence
F#

let seq = Seq.initInfinite (fun i -> i)
let seg2 =

seq

|> Seg.map(fun e -> (e, e*e))

for xin seg2 do
printfn "%A" x

Rust

letseq=1.,;
let seq =
seq
-map(|e] (e, e*e));
for xin seq {
printin!("{:?}", x);
}

3.4.) Currying
F#

letaddxyz=
X+y+z

printin "1+ 2 + 3 =%d" (add 1 2 3)
letadd 4 y z=add 4

printin "4 +5+ 6 =%d" (add_4_y z586)
letadd 4 7 z=add 4y z7

printfn "4 +7+8 =%d" (add_4 7 z8)
printfn "9+ 8+ 7 =%d" (add 9 8 7)

Rust

Well rust does not have currying, but | am not willing to give F# free victory @ so | used library. | think to write it
myself, would be below 50 lines, but | decided to use library, that handles more edge cases with only few
more lines, 97 to be exact (@ using library is great way in Rust, because you can read the code to confirm if
it does what you want the way you want. Reason | chose to use library was that | could not decide if to use
macro on function side, or partial application side, so | look if there are some suggestions which one would
be better, and find out that both are already available, each having some advantages and disadvantages.

println! (

add 4 y z add (4)
println! (

add 4 7 z add 4 y z(

println! (
println! (

3.5.) Computation expressions / Try / Procedural macros / macro_rules!
In rust own implementation of try is experimental only which means it can be used only if explicitly enabled, in
nightly compiler, and can change before being stabilized, there is only few guarantees about experimental code.
You can read more at Tracking Issue for try trait v2, A new design for the ? desugaring (RFC#3058), or in the RFC
extend ? to operate over other types.

F#'s computation expressions are probably more powerful than Try trait in Rust, but harder to implement (at lest for
the first one to understand it). But they are less powerful than procedural macros in Rust, but again first one might
be easier. And third alternative can be macro_rules!, which are as powerful as computation expressions, and for
simple cases easier to write, but at some point it would be worth switching to procedural macros, because |
personally see them easier to write in cases when more than few input combinations is required.

3.5.1.) Closure for Option / Result
You can sefely ignore next 3-4 sections if you only (mostly) care about Option and Result.
I was trying so much to make it similar that | overlooked the easiest way to do it, for Option and Result.

https://github.com/rust-lang/rust/issues/84277
https://github.com/rust-lang/rfcs/pull/1859
https://github.com/rust-lang/rfcs/pull/1859

|| => Result<i32, ()> {
: Result<i32 ()> = 0k (3)

{
%
x
Yy

And only Try is stable (or if you use nigly with Try enabled) you can do this for any type ©

3.5.2.) Try
Technically can match functionality of Bind and ReturnFrom, but can be easily combined with async for Delay,
generators are also unstable, but because combining things is easy in Rust, combining with generators would give
Yield and YieldFrom. Return, Run, and Zero arent needed in Rust, when replicating computation expressions with
Try. There is even an alternative unstable syntax that looks almost like F#‘s computation expressions.

{
x = Some (3)7?;
printin! ('Got “{}°", X);
y = Some (4)?;

printin! ("Got “{}°", y);
z = Some (5)7?;
printin! ("Got “{}°", 2);
printin! ("Returning “Some ({})~", x *y * 2);
z*y*z

}

Example of implementation of the Try trait.

3.5.3.) macro_rules!
Is simple code replacing tool that can easily represent computation expression. It would be very simple to have
macro_rules! that represent any method of computation expression, probably even any two, but more is to me a bit
complicated, but definitly not impossible, because people already created macros that can parse other languages (I
belive procedural macros are much better pick for that). In simple terms when writing macro_rules! you define input
AST (Abstract Syntax Tree), or multiple variations, and for each you define output Rust code it should produce, so
everything is nicely type checked ©.
| tested and it actually works, but these macros have a limitation of ,,safe scopes” so hackery (with procedural
macros) is needed to access any variable from outer scope, which means either more complex transformation to do
that, or pasing everything as an argument, which would defeat the purpose.

3.5.4.) procedural macros
Procedural macros are the more poverfull brother to the macro_rules! (and sometimes less, because input is valid
Rust code, while macro_rules! can eat up any syntax like morse code ©). They requite own crate and can do literally
anything. They are written as function that accepts token stram and output token stream, both are AST (Abstract
syntax tree) based so you do not have to worry about spaces, and there is surprisingle big amount of helpers that
allow you to easily construct a more complicated things like functions, structures, adding fields to structures, and
using them in newly generated methods. These are literally compiler extensions. Have a bit higher up fron
investment than macro_rules!, but after writing first one they no longer look soo different.

They can easily do exactly what F#‘s computation expressions do, but if | understood the issue correctly there is an
issue with generics, so they will need to resolve some types at compilation, but that does not sound like too hard

task, Hmight try to write POC for that ©.

https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=f80da2ed9e47fb29448d1913178d720c

| did the POC and it works fine © have a look github/computation expression

3.5.5.) Computation expressions
Will be comming to rust at some point too, there is an request for an REC Explore computational expressions in rust

(do notation).

4.) Logging

F#

No standard way to do it, no standard interface to use, so many library options, that are incompatible with each
other, so own abstraction is needed, because the common function(s) can be easily mapped, so such abstraction is
possible. By default everything you pass to the log message is resolved, even if the logging is disabled. Triks to avoid
that evaluation are either expensive, or badly readable, or both.

Rust
Crate log

The basic use of the log crate is through the five logging macros: error!, warn!, info!, debug! and
trace! where error! represents the highest-priority log messages and trace! the lowest. The log
messages are filtered by configuring the log level to exclude messages with a lower priority. Each
of these macros accept format strings similarly to printin!.

Any logging crate you pick will work with this and at most the only thing you need to do is to call some initialization
rutine (simple console loggingin does not need that). All libraries that you decide to use and do log will also use this,
so there is 100% compatibility for logging.

Not that it would be good practice, but you can even call expensive DB queries in trace logs, and they will not cause
any performance issues as long as tracing for that module will be disabled, because level filter is evaluated, before,
the content is evaluated, so they will not be executed.

5.) Code generation

F#
FSharp.Compiler.CodeDom too complicated to put it here

Rust

macro_rules! say_hello {
// () indicates that the macro takes no argument.
0=>{
// The macro will expand into the contents of this block.
printin!(*Hello!);
3
}

fn main() {
// This call will expand into “printin!(*Hello");"
say_hello!()

}

https://github.com/xNxExOx/computation_expression
https://github.com/rust-lang/rfcs/issues/2034
https://github.com/rust-lang/rfcs/issues/2034
https://docs.rs/log/latest/log/
https://docs.rs/log/latest/log/macro.error.html
https://docs.rs/log/latest/log/macro.warn.html
https://docs.rs/log/latest/log/macro.info.html
https://docs.rs/log/latest/log/macro.debug.html
https://docs.rs/log/latest/log/macro.trace.html
https://docs.rs/log/latest/log/macro.error.html
https://docs.rs/log/latest/log/macro.trace.html
https://doc.rust-lang.org/stable/std/macro.println.html

DRY (Don't Repeat Yourself), or Domain Specific Languages (DSLs) from Rust by example book. Rust macros are type
safe, but allow you to use type inference to achieve great things, like statically generate all possible subselects and
joins on sql tables (yes this is real usecase ©), macros can be used for printing to console and logging (yes also real
use case printfn! is probably one of the most directly used macros, and “log!" is probably one of the most indirectly
used macros).

The logging exmample log crate provides error!, warn!, info!, debug! and trace! macros. Awsome thing about those
is that if your build explicitly disables logging, they result in no code generated for logging. But even if you have
normal logging enabled and configured to info and above, and have very complicated string to log, that needs to
read some parts from database, but it is just trace log, even on hot code path it will just check that logging is not
enabled for that level (and location) and the code inside will not execute.

6.) Ownership (and borrowing) responsibilities

6.1.) Who is responsible?

F#
Programmer is reposible for not creating race conditions, garbage collector is responsible for dealocation.

Rust

Compiler is responsible for refusing code that can contains race conditions, and statically planned dealocation at the
end of scope. Simply said As many threads as you want can read same, thing when no one is writing to it, but only
one can be writing when no one is reading, so there can never be a race condition. Will not bother you with too
much details, but this is one of the most important things about Rust called ownership and borrowing.

Garbage collection is not needed because when scope owning an allocation ends it gets automatically deallocated.
Ownership can be transfered from one scope to another (return value, function argument, another move), or
borrowed. There are two kinds of borrow immutable and mutable. Borrow checker track their lifetimes, and disallow
compiling code where two mutable references to same allocation would exist, or 1 mutable and non zero amount of
immutable at same time.

Here is few examples of how borrowing works, and how detailed error messages it provides.
6.2.) Examples

6.2.1.) lterator invalidation
Code

let mut v = vec![1, 2, 3];
for i in &v {

printint!("{}", i);
v.push(34);

https://doc.rust-lang.org/rust-by-example/macros/dry.html
https://doc.rust-lang.org/rust-by-example/macros/dsl.html
https://docs.rs/log/latest/log/
https://docs.rs/log/latest/src/log/macros.rs.html#11
https://docs.rs/log/latest/src/log/macros.rs.html#11

Error

error: cannot borrow v~ as mutable because it is also borrowed as immutable
v.push(34);
N

note: previous borrow of “v' occurs here; the immutable borrow prevents
subsequent moves or mutable borrows of “v© until the borrow ends
for i in &v {

N

note: previous borrow ends here
for 1 in &v {
printIn!(“{}”, 1);
v.push(34);

> =

6.2.2.) Use after free

Code
let y: &i32;
{
let x = 5;
y = &x;

}
printin!("{}", y):

Error

error: “x does not live long enough

y = &x;
N

note: reference must be valid for the block suffix following statement 0 at 2:16...
let y: &i32;
{

let x = 5;

y = &x;
}
note: ...but borrowed value is only valid for the block suffix following statement 0 at
4:18

let x = 5;

y = &x;

7.) Ecosystem

7.1.) Libraries

F#
You can use nuget.
Advantages:

Many libraries (298,068 unique packages as the time of writing)
Integrated so you can just add to the solutions

Support private repositories

Mostly can of works offline with local cache

Disadvantages:

e Most libraries are C# without having F# in mind, and even F# libraries depend on too much C# parts (personal opinion)
e Hard to do target specific dependencies
e Most nugets do not include good documentation, and source code

You can get source code from different git options, and other 3rd party options.
Advantages:

¢ You might get newer versions
e You may find libraries that are not avalable on nuget

Disadvantages:

¢ Nointegrated support
¢ You need to copy the source code
¢ No automated update check

Rust
You can use Cargo.

Advantages:

e Many libraries (78,877 Crates in stock as the time of writing)

e Integrated so you just name what you want, (it is even easy to get multiple versions of same thing, so no version
compatibility issues)

e Support private repositories

e Supports any private or public git compatible repository

e Supports any path crates (private/shared drive with crates not being online)

e Supports target specific dependencies

e Supports build only dependencies

e Support development only dependencies

e Supports using only parts of crates trough features

e Uses Semantic versioning

e All (most) crates came with full source code

e Most crates have good documentation

Disadvantages:
e |donot know if there are any

You can get source code from different git options, and other 3rd party options, but it have no advantages, because
you can do the same with Cargo

https://www.nuget.org/
https://crates.io/

7.2.) Other differences

7.2.1.) If let statement
F#

let x =Some 1

match x with

| Some v -> printfn "%d" v
| None ->()

Rust

let x = Some(1);

if let Some(v) = x {
printin!("{}", v);

}

7.2.2.) Namespaces and modules

F#

For compatibility with rest of .Net F# have both namespaces and modules.

Modules are compiled to static classes, for the sake of compatibility with rest of .Net.

This compatibility causes inconsistent rules for indentation.

You can not have two modules with same name, but different namespace path, this would be useful for example to
have utils sub module for Seq, List, Map, ...

Rust

Only modules are available to separate code. Mostly module is code block, or file, but you can create module from
more than one file, but it is much less common, compared to use of sub modules, and re-exports. For tree
organization you can use folders.

You can have as many modules with same names as you want as long as they have unique full paths.

7.2.3.) Private vs public, mutable vs imutable, nullability

F#

Even though many claim F# to be imutable by default, and not nullable, unfortunatelly this part is very inconsistent.
Everything is public by default. You have only 3 visibility options, but none allow visibility scoping inside project.

F# only types are imutable by default, but there is a lot of hidden mutability in all .Net types like string, and F# does
not have fully imutable variant of that. Not even IDE provides indication of that.

F# only types can not be null by default, but there is a lot of hidden nullable in all .Net types like string, and F# does
not have not nullable variant of that. Not IDE nor the compiler warns about possible nulls!

Rust
By default everything is private, imutable, not nullable. You can make things visible only to specific modules if you
want.

Rust does not even have a private keyword, because that is just default, and if you want something exposed you
need to make it public.

Only 2 exceptions to that rule are trait (interface) functions, and crate’s public exported interface.

7.2.4.) Exceptions

F#
Because of rest of .Net F# is full of exceptions.

Rust

Many will tell you that Rust does not have exceptions, but that is not exactly true. Rust have exceptions, but they
aren‘t there for your error handling (even though you can abuse them for that if you try hard enough), but for
makers of operating systems, runners, and other similar things that need to handle fatal errors (including not enough
memory) from the inner code.

Most common way to cause exceptions are ,,panic!“ macro, ,,unimplemented!“ macro, ,,asert*“ group of macros,
LSunwrap()“, or ,,except(...)“ methods on many types, most notably Results and Options. And are used with intention
to terminate the program if that condition is reached, because they are considered non recoverable errors.

7.2.5.) Tests

F#
Too many options, that often rely on reflection, and require 3rd party runner, and have no compatibility with each
other.

Rust

Standardized way to run test